Next: About this document ...
Up: index
Previous: 6. Summary
Tartalomjegyzék
-
- 1
- M. BECK, R. DIAZ and S. ROBINS,
The Frobenius problem, rational polytopes, and Fourier-Dedekind sums,
J. Number Theory, 96 (1) (2002), 1 - 21.
- 2
- T. C. BROWN and P. J. SHIUE,
A remark related to the Frobenius problem,
The Fibonacci Quarterly 31(1) (1993), 32 - 36.
- 3
- J. L. DAVISON,
On the linear diophantine problem of Frobenius,
J. Number Theory, 48 (1994), 353 - 363.
- 4
- J. DIXMIER, Proof of a conjecture by
Erdos and Graham concerning the problem of Frobenius,
J. Number Theory, 34 (1990), 198 - 209.
- 5
- P. ERDŐS, Problem P-84, Can. Math. Bull.,
14 (1971),
275 - 277.
- 6
- P. ERDŐS and R. L. GRAHAM,
On a linear diophantine problem of Frobenius,
Acta Arithmetica, 21 (1972), 399 - 408.
- 7
- P. ERDŐS and R. L. GRAHAM, Old and
New Problems and Results in Combinatorial Number Theory,
Monographies de l'Enseignement Mathématique,
28 Université de Genève, 1980.
- 8
- FAZAKAS TÜNDE - HRASKÓ ANDRÁS (szerk.), Bergengóc példatár,
Matematika feladatok
és azok megoldásai 2. Typotex Kiadó, Budapest 2001.
- 9
- FREUD RÓBERT - GYARMATI EDIT, Számelmélet
(egyetemi tankönyv), Nemzeti Tankönyvkiadó, Budapest, 2000.
- 10
- R. L. GRAHAM, D. E. KNUTH and
O. PATASHNIK, Concrete Mathematics,
Reading, Mass.: Adison-Wesley, 1990.
- 11
- M. HUJTER, On sharp upper and lower
bounds for the Frobenius problem,
Technical Report MO/32 Computer and Automation Inst.,
Hungarian Academy of Sciences, (1982)
- 12
- M. HUJTER, Lower bounds for the Frobenius problem,
Technical Report MO/43 Computer and Automation Inst.,
Hungarian Academy of Sciences, (1982)
- 13
- A. JANZ, Bestimmung der maximalen Frobeniuszahl,
Master thesis, Johannes Guttenberg Universität, Mainz, April 1997.
- 14
- S. M. JOHNSON, A linear diophantine problem,
Can. J. Math., 12 (1960) 390 - 398.
- 15
- H. G. KILLINGBERGTRO,
Betjening av figur i Frobenius' prob-lem (Using figures in Frobenius'
problem), (Norwegian) Normat 2 (2000), 75 - 82.
- 16
- G. KISS, Extremal Frobenius numbers in some special cases,
Annales Univ. Sci. Budapest, 44 (2001), 27 - 31.
- 17
- G. KISS, On the extremal Frobenius problem in a new aspect,
Annales Univ. Sci. Budapest, 45 (2002), 139 - 142.
- 18
- G. KISS, The Frobenius problem on
competitions and in classroom,
Teaching Mathematics and Computer Science, 1/2 (2003), 203 - 218.
- 19
- V. F. LEV, On the extremal aspect of the Frobenius problem,
Journal of Combinatorial Theory, Series A, 73 (1996), 111 - 119.
- 20
- M. LEWIN, A bound for a solution of a
linear Diophantine prob-lem,
J. London Math. Soc., 6 (1972), 61 - 69.
- 21
- M. NAGATA and H. MATSUMURA, A theorem
in elementary arithmetic
(in Japanese), Sugaku, 13 (1961-62) 161; Math. Rev.
25 (3) (1963) No. 2386.
- 22
- M. NIJENHUIS and H. S. WILF,
Representation of integers by linear forms in nonnegative integers, J. Number Theory, 4 (1972), 98 - 106.
- 23
- J. L. RAMÍREZ ALFONSÍN,
The Diophantine Frobenius Problem,
Forschungsinstitut für Diskrete Mathematik, Bonn,
Report No. 00893, 2000.
- 24
- J. L. RAMÍREZ ALFONSÍN,
The Diophantine Frobenius Problem,
Equipe Combinatoire Université Pierre et Marie Curie, Paris
Report, June 2003.
- 25
- REIMAN ISTVÁN, Nemzetközi Matematikai Diákolimpiák
1959 - 1994,Typotex Kiadó, Budapest, 1997, 362 - 365.
- 26
- J. B. ROBERTS, Note on linear forms,
Proc. Amer. Math. Soc., 7 (1956), 465 - 469.
- 27
- Ö. J. RÖDSETH, A note on Brown and Shiue's
paper on a remark related to the Frobenius problem,
Fibonacci Quarterly, 32(5) (1994), 407 - 408.
- 28
- E. S. SELMER, On the linear diophantine problem of Frobenius, Journal
für reine und angewandte Mathematik, 293/294 (1) (1977), 1 - 17.
- 29
- S. SERTÖZ and A. ÖZLÜK,
On a diophantine problem of Frobenius,
Bull. Tech. Univ. Istanbul, 39(1) (1986), 41 - 51.
- 30
- J. J. SYLVESTER, Mathematical questions with their solution,
Educational Times, 41 (1884), 21.
- 31
- C. TINAGLIA, Su alcume soluzioni di un
problema di Frobenius in tre variabili, Boll. U. M. I. 7(2)
(1988), 361 - 383.
- 32
- VÍZVÁRI BÉLA, Mit rakjunk a hátizsákba, hogyan
váltsunk fel pénzt? I. - II. Középiskolai Matematikai Lapok, Budapest, 46 (1996),
386 - 391, 452 - 457.
root
2004-12-04